

Assistant Lecturer

University.of Basra - College of Dentistry - Department of Basic Sciences
MSc. Medicinal Biochemistry from Malaysian National University (UKM) - Malaysia
Email:- hazim.saad@uobasrah.edu.iq and hazzmrn@yahoecom

Preparation of difierent types ois solutions

Rxperiment(7)

An analysisofamixtureofina3CO3 and NaOH using two indicatorsanda

standard HClsolution

$\mathrm{H}=\mathrm{MI}$

 2T
(F: 1

53

Theory:

1- When a known volume of the mixture is titrated with HCl in presence of ph . ph., the acid reacts with all the sodium hydroxide and with only half of the carbonate.

V1 = all hydroxide $+\mathbf{1} / 2$ the carbonate

2- When a known volume of the mixture is titrated with HCl in presence of M.O., the acid reacts with all the hydroxide and all the carbonate.

$$
\begin{aligned}
& \mathrm{V} 2=\text { all hydroxide }+ \text { all carbonate } \\
& \text { Volume of } \mathrm{HCl}=1 / 2 \text { carbonate }=\mathrm{V} 2-\mathrm{V} 1=\mathrm{V} \mathrm{ml} \\
& \text { Volume of } \mathrm{HCl}=\text { all carbonate }=2 \mathrm{~V} \mathrm{ml} \\
& \text { Volume of } \mathrm{HCl}=\mathrm{NaOH}=\mathrm{V} 2-2 \mathrm{~V} \mathrm{ml}
\end{aligned}
$$

General interaction

Calculations:

- In the case of $\mathrm{Na}_{2} \mathrm{CO}_{3}$:
- Calculate the concentration of $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$.
- Calculate the volume of acid (HCl) that is equivalent to $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
$\mathrm{V}_{1}=\mathbf{2 V y}$
$\mathbf{N}_{\mathbf{H C l}} \times \mathbf{V}_{\mathbf{H C l}}=\mathbf{N}_{\mathrm{Na} 2 \mathrm{CO}^{2}} \times \mathbf{V}_{\mathrm{Na} 2 \mathrm{CO}}$

- In the case of NaOH :

- Calculate the volume of acid equivalent (NaOH).
$\mathrm{V}_{2}=\mathrm{V}_{\mathrm{X}}-\mathrm{V}_{\mathrm{y}}$
$\mathrm{V}_{2}=\mathrm{V}_{\mathrm{X}}\left(1 / 2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaOH}\right)-\mathrm{V}_{\mathrm{y}}\left(1 / 2 \mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
$\mathrm{N}_{\mathrm{HCI}} \times \mathrm{V}_{\mathrm{HCl}}=\mathrm{N}_{\mathrm{NaOH}} \times \mathrm{V}_{\mathrm{NaOH}}$

Experiment (8)

Precipitation titration

Determination of chloride ion by Mohr method

Precipitation titration: is titration depend upon the combination of ions to form a simple precipitate. Mohr method is a method depend upon formation a colored precipitate for the determination of chloride ion.

Chloride ion, is reacted with silver nitrate solution to form AgCl precipitate.

$$
\mathrm{AgNO}_{3}+\mathrm{NaCl} \longleftrightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}
$$

A small quantity of potassium chromate $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$ solution is added to serve as indicator. The first excess of titrant results in the formation of a red silver chromate precipitate which signal the end point.

$$
2 \mathrm{AgNO}_{3}+\mathrm{K}_{2} \mathrm{CrO}_{4} \longleftrightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}+2 \mathrm{KNO}
$$

Calculate

$$
\mathbf{N}_{\mathrm{Cl}}^{-} \times \mathbf{V}_{\mathrm{Cl}}^{-}=\mathbf{N}_{\mathrm{Ag}+} \times \mathbf{V}_{\mathrm{Ag}+}
$$

Concentration of $[\mathrm{Cl}-](\mathrm{ppm})=\mathrm{N}_{\mathrm{Cl}^{-} \times \mathrm{eq} . \text { wt } \times 1000}$

